\begin{align*} v_x&=u_x+a_xt\\ \Delta x&=\left(\dfrac{u_x+v_x}{2}\right)t\\ \Delta x&=u_xt+\dfrac{1}{2}a_xt^2\\ v_x^2&=u_x^2+2a_x\Delta x \end{align*}
\[\sum \vec{F}=m\vec{a}\]
\[f_{\text{s}}\leq\mu_\text{s}N\]
\[f_\text{k}=\mu_\text{k}N\]
\[F_\text{G}=\dfrac{Gm_1m_2}{r^2}\]
\[\vec{W}=m\vec{g}\]
\[\sum \vec{F}=0\]
\[M=Fl=Fr\sin\theta\]
\[\sum M=0\]
\[W=\vec{F}\cdot\Delta \vec{x}=F_x\Delta x\cos\theta\]
\[W_{\text{gravity}}=-mg\Delta h\]
\[P_{\text{av}}=\dfrac{W}{\Delta t}\]
\[E_\text{k}=\dfrac{1}{2}mv^2\]
\[W=E_\mathrm{k_f}-E_\mathrm{k_i}\]
\[E_\text{p}=mgh\]
\[F_\text{s}=-kx\]
\[E_\mathrm{p_s}=\dfrac{1}{2}kx^2\]
\[\text{Efficiency}=\dfrac{W_{\text{out}}}{W_{\text{in}}}\times100\%\]
\[\text{M.A.}=\dfrac{F_\text{out}}{F_\text{in}}=\dfrac{s_\text{in}}{s_\text{out}}\]
\[\vec{p}=m\vec{v}\]
\[\sum \vec{F}=\dfrac{\Delta \vec{p}}{\Delta t}\]
\[\vec{I}=\left(\sum \vec{F} \right) \Delta t=\Delta \vec{p}\]
\[\vec{p}_\text{i}=\vec{p}_\text{f}\]